STAT 643. Applied Linear Regression. 3 Hours.

Semester course; 3 lecture hours. 3 credits. Prerequisite: MATH 200-201, STAT 212 and MATH 310 or equivalents. An introduction to the concepts and methods of linear regression analysis. Topics include simple linear regression, multiple linear regression, the impact of model misspecification, model selection criteria, residual analysis, influence diagnostics, diagnostic plots, multicollinearity, transformations and response surface methodology. Applications involve the use of a statistical software package.