STAT 744. Regression II. 3 Hours.

Semester course; 3 lecture hours. 3 credits. Prerequisite: STAT 643 or equivalent. Theoretical development and advanced applications of the general linear regression model and nonlinear regression models. Topics include an overview of multiple linear regression, generalized least squares and weighted regression, procedures for diagnosing and combating multicollinearity, advanced model selection criteria, influence diagnostics including multiple observation diagnostics and singular value decomposition, nonlinear regression, Poisson regression, logistic regression, generalized linear models and the exponential family, variance modeling and nonparametric regression. Applications involve the use of a statistical software package.