This is the preliminary (or launch) version of the 2021-2022 VCU Bulletin. This edition includes all programs and courses approved by the publication deadline; however we may receive notification of additional program approvals after the launch. The final edition and full PDF version will include these updates and will be available in August prior to the beginning of the fall semester.

The profession of electrical engineering touches all aspects of our lives in that electrical engineers design and fabricate devices and systems critical in applications such as computing, communications, health care, manufacturing and automation, power generation and utilization, transportation, and entertainment. An element very important to these and many other applications is the microelectronic device or system.

In the sub-area of microelectronics, electrical engineers design and fabricate electronic materials such as semiconductors, conductors and superconductors used in the manufacture of electronic devices. As a natural progression, electrical engineers design and fabricate electronic devices such as transistors, which control or modulate the flow of energy; sensors of light, mechanical force, chemicals, etc.; electromagnetic radiation sources such as lasers, light emitting diodes and microwave power sources. Following this progression, we find electrical engineers designing and fabricating integrated circuits such as microprocessors and memory elements; flat-panel displays, etc., which are found in applications ranging from supercomputers to watches, clocks and toys. Further in this progression we find electrical engineers designing and fabricating today’s and tomorrow’s computers.

Computer systems and application-specific integrated circuits are the elements that enable the existence of today’s communication systems, such as the Internet, satellite systems, telemedicine, wired and wireless (cellular) telephones, along with standard and high definition television. Additionally, along with sensors, microwave power sources and actuators, they permit our present and future automated manufacturing lines, air and traffic control systems, and automotive safety and traffic control through collision avoidance radar systems, antilocking brake systems, air bag actuators, automatic traffic routing and the “smart highway” of the future.

Electrical engineers play an ever increasing role in the design and building of major facets of today’s and tomorrow’s health care systems and medical research through the application of microelectronic instrumentation and diagnostic tools such as MRI and CAT scan systems. The field of electrical engineering truly permeates every facet of our lives and thus provides excellent employment opportunities to the general practitioner or specialist in more than 35 different subspecialties.

Student learning outcomes

Upon completing this program, students will know and know how to do the following:

  1. Identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
  2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
  3. Communicate effectively with a range of audiences
  4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
  5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
  6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. Acquire and apply new knowledge as needed, using appropriate learning strategies