Defense Date


Document Type


Degree Name

Master of Science


Environmental Studies

First Advisor

Dr. Edward Crawford


Invasive plants are a significant threat to native ecosystems and to biodiversity. They are often strong competitors and have multiple techniques to outcompete native plants. Thus, controlling or removing invasive plants facilitates the restoration of native ecosystems. We used GPS technology coupled with field surveying techniques adapted from the U.S. Fish and Wildlife Service to locate and identify invasive plants present within VCU’s Rice Rivers Center. We digitally overlaid a 50-meter x 50-meter grid system over the property. In each grid cell we recorded visual estimations of invasive plant coverage sorted into modified Daubenmire cover classes and used ArcGIS for mapping and analysis. Altogether, we found 25 unique invasive plant species. 93% of the grid cells contained at least one invasive species, and one grid cell contained seven unique species. The influence of anthropogenic disturbance on invasive species distribution, analyzed by using a 50-meter wide buffer zone around each disturbance (e.g., roads, buildings, etc.), showed that the presence and coverage of invasive species was greater within disturbed areas compared to intact forest. Microstegium vimineum, Lonicera japonica, and Ligustrum sinense were most common and widely distributed within terrestrial habitats, while Murdannia keisak was most widely distributed in the restored wetland. Our results for M. vimineum were compared to a similar 2004 study: this species has since spread from 40% to 76% of the grid cells. The spatial maps we have created will be a foundation for an integrated invasive species management program at the Rice Rivers Center and will assist with management, control and restoration efforts within terrestrial and aquatic ecosystems.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission



View graphic version