Defense Date


Document Type


Degree Name

Doctor of Philosophy


Microbiology & Immunology

First Advisor

Dr. Jason A. Carlyon


Anaplasma phagocytophilum and A. marginale are the etiologic agents of bovine anaplasmosis and human granulocytic anaplasmosis, respectively. As obligate intracellular pathogens, binding and entry of host cells is a prerequisite for survival. The molecular events associated with these processes are poorly understood. Identifying the adhesins mediating binding, delineating their key functional domains, and determining the molecular determinants to which they bind not only benefits better understanding of Anaplasma spp. pathobiology, but could also benefit the development of novel approaches for protecting against infection. We previously demonstrated that A. phagocytophilum outer membrane protein A (ApOmpA) is critical for bacterial binding and entry host through recognition of α2,3-sialic acid and α1,3-fucose of its receptors, including 6-sulfo-sLex. In this study, we determined that two amino acids, G61 and K64, within its binding domain (ApOmpA59-74), are essential for ApOmpA function. We also confirmed the ability of ApOmpA to act as an adhesin and invasin as it conferred adhesiveness and invasiveness to inert beads. We next extended our studies to A. marginale as it also expresses OmpA (AmOmpA) and its role in infection has not been studied. Molecular models of ApOmpA and AmOmpA were nearly identical, especially in the ApOmpA binding domain and its counterpart in AmOmpA. Antisera raised against AmOmpA or its putative binding domain inhibit A. marginale infection. AmOmpA G55 and K58 are contributory and K59 is essential for AmOmpA to bind to host cells. AmOmpA binding is dependent on α2,3-sialic acid and α1,3-fucose. Coating inert beads with AmOmpA conferred the ability to bind to and be taken up by host cells, confirming that it acts as an adhesin and invasin. 6-sulfo-sLex is dispensable for AmOmpA binding and A. marginale infection. ApOmpA works cooperatively with Asp14 (14-kDa A. phagocytophilum surface protein) to promote optimal infection of host cells. We found that Asp14 is conserved across A. phagocytophilum strains and in A. marginale and confirmed the ability of Asp14 to act as an adhesin and invasin as it conferred adhesiveness and invasiveness to inert beads. Collectively, this work advances our understanding of A. phagocytophilum and A. marginale adhesion and invasion of host cells.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Friday, April 17, 2026


View graphic versionView graphic versionView graphic version